Abstract
We elaborate on a geometric characterization of the electromagnetic properties of matter. A fundamental complex quantity, zL, is introduced to study the localization properties of extended quantum systems. zL, which allows us to discriminate between conducting and non-conducting thermodynamic phases, has an illuminating physical (and geometric) interpretation. Its phase can be related to the expectation value of the position operator (and a Berry phase), while its modulus is associated with quantum electric polarization fluctuations (and a quantum metric). We also study the scaling behavior of zL in the one-dimensional repulsive Hubbard model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.