Abstract
We consider single-particle properties in the one-dimensional repulsive Hubbard model at commensurate fillings in the metallic phase. We determine the real-time evolution of the retarded Green's function by matrix-product state methods. We find that at sufficiently late times the numerical results are in good agreement with predictions of nonlinear Luttinger liquid theory. We argue that combining the two methods provides a way of determining the single-particle spectral function with very high frequency resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.