Abstract

So, what is the answer to the question “How good is Lebesgue measure?” In the class of invariant measures, Lebesgue measure seems to be the best candidate to be a canonical measure. In the class of countably additive not necessarily invariant measures, to find a universal measure we have to use a strong additional set-theoretical assumption and this seems to be too high a price. Thus the best improvement of Lebesgue measure seems to be the Banach construction of a finitely additive isometrically invariant extension of Lebesgue measure on the plane and line. However, such a measure does not exist on Rn for n ≤ 3, and to keep the theory of measures uniform for all dimensions we cannot accept the Banach measure on the plane as the best solution to the measure problem. From this discussion it seems clear that there is no reason to depose Lebesgue measure from the place it has in modern mathematics. Lebesgue measure also has a nice topological property called regularity: for every EL and every ɛ > 0, there exists an open set V⊃E and closed set F ⊂ E such that m(V/F) < ɛ. It is not difficult to prove that Lebesgue measure is the richest countably additive measure having this property (see [Ru], Thm. 2.20, p. 50).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call