Abstract

We provide an N/V-limit for the infinite particle, infinite volume stochastic dynamics associated with Gibbs states in continuous particle systems on ℝ d ,d≥1. Starting point is an N-particle stochastic dynamic with singular interaction and reflecting boundary condition in a subset Λ⊂ℝ d with finite volume (Lebesgue measure) V=|Λ|<∞. The aim is to approximate the infinite particle, infinite volume stochastic dynamic by the above N-particle dynamic in Λ as N→∞ and V→∞ such that N/V→ρ, where ρ is the particle density. First we derive an improved Ruelle bound for the canonical correlation functions under an appropriate relation between N and V. Then tightness is shown by using the Lyons–Zheng decomposition. The equilibrium measures of the accumulation points are identified as infinite volume canonical Gibbs measures by an integration by parts formula and the accumulation points themselves are identified as infinite particle, infinite volume stochastic dynamics via the associated martingale problem. Assuming a property closely related to Markov uniqueness and weaker than essential self-adjointness, via Mosco convergence techniques we can identify the accumulation points as Markov processes and show uniqueness. I.e., all accumulation corresponding to one invariant canonical Gibbs measure coincide. The proofs work for general repulsive interaction potentials ϕ of Ruelle type and all temperatures, densities, and dimensions d≥1, respectively. ϕ may have a nontrivial negative part and infinite range as e.g. the Lennard–Jones potential. Additionally, our result provides as a by-product an approximation of grand canonical Gibbs measures by finite volume canonical Gibbs measures with empty boundary condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.