Abstract

We investigate the copper-wear-protective effects of graphene and boron nitride in single asperity sliding contact with a stiff diamond-coated atomic force microscopy (AFM)-tip. We find that both graphene and boron nitride retard the onset of wear of copper. The retardment of wear is larger with boron nitride than with graphene, which we explain based on their respective out-of-plane stiffnesses. The wear protective effect of boron nitride comes, however, at a price. The out-of-plane stiffness of two-dimensional materials also determines their friction coefficient in a wear-less friction regime. In this regime, a higher out-of-plane stiffness results in larger friction forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.