Abstract

This paper gives some known theoretical results about fuzzy rule-based classifiers and offers a few new ones. The ability of Takagi-Sugeno-Kang (TSK) fuzzy classifiers to match exactly and to approximate classification boundaries is discussed. The lemma by Klawonn and Klement about the exact match of a classification boundary in R (2) is extended from monotonous to arbitrary functions. Equivalence between fuzzy rule-based and nonfuzzy classifiers (1-nn and Parzen) is outlined. We specify the conditions under which a class of fuzzy TSK classifiers turn into lookup tables. It is shown that if the rule base consists of all possible rules (all combinations of linguistic labels on the input features), the fuzzy TSK model is a lookup classifier with hyperbox cells, regardless of the type (shape) of the membership functions used. The question "why fuzzy?" is addressed in the light of these results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.