Abstract
Abstract. Clouds and cloud feedbacks represent one of the largest uncertainties in climate projections. As the ice phase influences many key cloud properties and their lifetime, its formation needs to be better understood in order to improve climate and weather prediction models. Ice crystals sedimenting out of a cloud do not sublimate immediately but can survive certain distances and eventually fall into a cloud below. This natural cloud seeding can trigger glaciation and has been shown to enhance precipitation formation. However, to date, an estimate of its occurrence frequency is lacking. In this study, we estimate the occurrence frequency of natural cloud seeding over Switzerland from satellite data and sublimation calculations. We use the DARDAR (radar lidar) satellite product between April 2006 and October 2017 to estimate the occurrence frequency of multi-layer cloud situations, where a cirrus cloud at T < −35 ∘C can provide seeds to a lower-lying feeder cloud. These situations are found to occur in 31 % of the observations. Of these, 42 % have a cirrus cloud above another cloud, separated, while in 58 % the cirrus is part of a thicker cloud, with a potential for in-cloud seeding. Vertical distances between the cirrus and the lower-lying cloud are distributed uniformly between 100 m and 10 km. They are found to not vary with topography. Seasonally, winter nights have the most multi-layer cloud occurrences, in 38 % of the measurements. Additionally, in situ and liquid origin cirrus cloud size modes can be identified according to the ice crystal mean effective radius in the DARDAR data. Using sublimation calculations, we show that in a significant number of cases the seeding ice crystals do not sublimate before reaching the lower-lying feeder cloud. Depending on whether bullet rosette, plate-like or spherical crystals were assumed, 10 %, 11 % or 20 % of the crystals, respectively, could provide seeds after sedimenting 2 km. The high occurrence frequency of seeding situations and the survival of the ice crystals indicate that the seeder–feeder process and natural cloud seeding are widespread phenomena over Switzerland. This hints at a large potential for natural cloud seeding to influence cloud properties and thereby the Earth's radiative budget and water cycle, which should be studied globally. Further investigations of the magnitude of the seeding ice crystals' effect on lower-lying clouds are necessary to estimate the contribution of natural cloud seeding to precipitation.
Highlights
Clouds and cloud feedbacks contribute the largest uncertainty to projections of climate sensitivity in global climate models (Cess et al, 1990; Soden and Held, 2006; Williams and Tselioudis, 2007; Boucher et al, 2013)
31 % of the measurements contain both a cirrus and a mixed-phase cloud simultaneously. This is the percentage of cases in which a seeding of the lower cloud by ice crystals falling from the ice cloud above is possible
Tailoring this result to the sedimentation of ice crystals from a cirrus cloud, when only the measurements that detect a cirrus cloud are taken into account, in 75 % of these measurements a mixed-phase cloud below them is detected
Summary
Clouds and cloud feedbacks contribute the largest uncertainty to projections of climate sensitivity in global climate models (Cess et al, 1990; Soden and Held, 2006; Williams and Tselioudis, 2007; Boucher et al, 2013). Especially cloud ice/water content, determine key cloud properties, such as their albedo and lifetime, and control precipitation formation (Mülmenstädt et al, 2015). The representation of the ice phase in clouds is necessary to estimate the Earth’s radiation budget and its response to climate change (Sun and Shine, 1995; Tan et al, 2016; Matus and L’Ecuyer, 2017; Lohmann and Neubauer, 2018) as well as to improve forecasts of precipitation in numerical weather prediction models. Natural cloud seeding can be a source of ice crystals in clouds, lead to the glaciation of clouds and enhance precipitation. U. Proske et al.: How frequent is natural cloud seeding from ice cloud layers?
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have