Abstract

State-of-art simulation models provide quantitative insights into flow, solidification and stress formation for continuous casting processes. This includes the entire process, from the tundish and the flow into the mold to the solidifying strand, which is withdrawn through various cooling zones. Process simulation and optimization provides important information about quality and productivity to evaluate process alternatives. This is only be possible if all relevant process parameters can be taken into account. The use of electromagnetic stirring is a technology which plays a significant role in the majority of continuous casting processes worldwide and its effects cannot be neglected in simulation models. This paper will discuss the modeling of electromagnetic stirring (EMS) and its impact on steel slab continuous casting.Two cases with and without EMS are presented. The theoretical background to calculate the Lorentz force are described. The EMS calculation described here works with traveling (linear) magnetic fields. The effect of the EMS on the flow behavior, solidification and macrosegregation is shown on an industrial-scale slab casting.This information leads to a better understanding of the EMS process in industrial applications to avoid casting defects, improve the quality of the final product, and increase the efficiency of the casting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.