Abstract

Vehicular emissions have become important sources of air pollution in China. Regarding the environmental impacts of vehicle emission control policies (VECPs), changes in air pollutants and CO2 emissions have attracted more attention. Hainan is the first province in China declared to ban the sale of fuel-powered cars by 2030, aiming to accelerate cutting down the local air pollution emissions. However, there is no previous study examining how these VECPs would affect air pollutants in Hainan. Further, research on whether the controls would lead to a real carbon reduction is limited. Therefore, this paper quantitatively assesses the emission changes of primary air pollutants (including NOx, CO, VOCs, PM2.5, PM10, and PMTSP) and greenhouse gases (CO2, CH4, and N2O) in the transportation sector with regard to different VECPs in Hainan. The results reveal that (1) VECPs would lead to significant increases in vehicular population by 21 %–65 % in 2025–2050. Specifically, light-duty cars and buses with 4-stroke engines (LD4Cs) is the largest contributor and banning sales of fuel-powered vehicles would lead to a larger increase of 1914.6 thousand (64 %) in 2030; (2) for air pollutant emissions, the policy scenario would bring notable reduction effects, decreasing by 1.0 %–16.0 % and 16.7 %–38.7 % in 2030 and 2050 (PM excluding), respectively, suggesting VECPs play important roles in alleviating environmental pollution; (3) conversely, for CO2 emissions, the policy scenario would cause increases of 0.8 Mt. (17.8 %) and 0.3 Mt. (6.1 %) in 2035 and 2050, respectively, indicating promoting new energy vehicles (NEVs) would increase carbon emissions. Meanwhile, it suggests that CO2 emission in the transportation sector of Hainan peaked in 2020. This research highlights that VECPs would be a double-edged sword, leading to air pollutants reductions but not necessarily decline CO2 emissions. This fact would further accelerate mechanism and technological innovation in transport to alleviate air pollution and carbon emissions simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.