Abstract

Recently a number of seminal studies have revealed that both sequence and spatio-temporal factors govern RNA decay in bacteria, which is crucial for regulation of gene expression. Ribonucleases have been described that not only exhibit sequence preferences, but also are sub-cellularly localised. Furthermore, the RNA itself is distributed in an organised manner and does not diffuse freely or randomly within the bacterial cells. Thus, even within the sub-micrometer distances of the bacterial intra-cellular space, the positions of the enzymes and their substrates are kept in check. Adding to this complexity is the secondary structure and sequence specificity that many, perhaps all, ribonucleases exhibit, including those that are responsible for "general" RNA degradation. In this review, the implications of these novel findings are discussed and specific examples from Staphylococcus aureus are analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.