Abstract

The aim of this work was to investigate the thermal biology of the Spix's yellow-toothed cavy (Galea spixii) from the hot and dry environment of the Brazilian Caatinga by infrared thermography and biophysical equations. We monitored the rectal temperature, as well as the non-evaporative (radiative and convective pathways) and evaporative heat exchanges of males and females. The mean rectal temperature of females and males was 37.58±0.02 and 37.47±0.02°C, respectively. We identified thermal windows by infrared thermography. The surface temperatures and the long-wave radiation heat exchanges were higher in the periocular, preocular, pinnae and vibrissae regions, in that order. The surface temperature of the periocular and preocular regions correlated positively with rectal temperature. Convective heat exchange was insignificant for thermoregulation by G. spixii. Evaporative heat loss increased when the thermal environment inhibited the radiative pathway. Females showed higher evaporative thermolysis than males at times of greater thermal challenge, suggesting a lower tolerance to heat stress. Therefore, infrared thermography identified the thermal windows, which represented the first line of defense against overheating in G. spixii. The periocular and preocular surface temperatures could be used as predictors of the thermal state of G. spixii.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.