Abstract
Timely delivery of oxygen (O2 ) to tissue mitochondria is so essential that elaborate circulatory systems have evolved to minimize diffusion distances within tissue. Yet, knowledge is surprisingly limited regarding the diffusion pathway between blood capillaries and tissue mitochondria. An established and growing body of work examines the influence cellular and extracellular structures may have on subcellular oxygen availability. This brief review discusses the physiological and pathophysiological significance of oxygen availability, highlights recent computer modelling studies of transport at the cell-membrane level, and considers alternative diffusion pathways within tissue. Experimental and computer modelling studies suggest that oxygen diffusion may be accelerated by cellular lipids, relative to cytosolic and interstitial fluids. Such acceleration, or 'channelling', would occur due to greatly enhanced oxygen solubility in lipids, especially near the midplane of lipid bilayers. Rapid long-range movement would be promoted by anisotropically enhanced lateral diffusion of oxygen along the midplane and by junctions holding lipid structures in close proximity to one another throughout the tissue. Clarifying the biophysical mechanism of oxygen transport within tissue will shed light on limitations and opportunities in tumour radiotherapy and tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.