Abstract

Summary The operational use of nanoparticles (NPs) in drilling and completion fluids is still limited at the present time, in part because of a lack of consistent evidence for and clarification of NP interactions with rock formations, formation fluid, and other fluid additives. For instance, previous fluids research emphasized that NPs bring about pore plugging, which reduces pressure transmission and, in turn, fluid inflow, into the shale pore matrix, which ultimately helps stabilize the borehole. However, it is difficult to understand how pore plugging might be accomplished in the absence of any substantial filtration in shales, considering that the minimal permeability of shales does not allow for any appreciable Darcy flow. This paper addresses the crucial question: “How, when, and why do NPs plug shale pore throats?” Zeta-potential (ZP) measurements were carried out on aqueous NP dispersions and on intact thin shale sections exposed to nanofluids to determine the degree of interaction behavior between NPs and shale. The experimental data were then used to calculate Derjaguin-Landau-Verwey-Overbeek (DLVO) curves (describing the force between charged surfaces interacting through a liquid medium) to determine if the total potential energy was sufficient for NPs to diffuse through the repellent barrier and attach to the shale surface. Calculated DLVO curves were used to demonstrate the NPs ability to contribute to borehole stability, but did not directly correlate the effects the NPs had on shale stability. Experiments, including pore pressure-transmission tests (PTTs), which measure fluid pressure penetration in shale, and modified thick-walled-cylinder (TWC) collapse tests, which explore the influence of NPs on the collapse pressure of shale samples, were conducted to directly investigate the effects of NPs on borehole stability in shale. Our investigation showed that NPs can reduce fluid pressure penetration and delay borehole collapse in shale, but only under certain conditions. Electrostatic/electrodynamic interaction between NPs and shale surfaces, governed by DLVO forces, is the main mechanism that leads to pore-throat plugging, reducing pressure transmission, which in turn benefits borehole stability by slowing down near-wellbore pore-pressure elevation and effective-stress reduction. For Mancos Shale, 20-nm anionic nanosilica particles were effective in partially plugging the pore-throat system, depending on the pH of the nanofluid, which affects the surface potential and ZP of both NPs and shale. Furthermore, cationic nanosilica showed better results for pore-plugging capabilities than the anionic nanosilica. Our findings lead to interesting challenges for the practical field application of NP-based drilling fluids for borehole stability, given that efficacy depends on the specific type of shale; the specific type, size, and concentration of NP; the interaction between NPs and shale; and external factors, such as pH, salinity, and temperature. Therefore, NP use for practical shale stabilization requires a dedicated, thoroughly engineered solution for each particular field application, and is unlikely to be “one size fits all.”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call