Abstract
DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water–metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks. Gepotidacin has been observed to sit on the twofold axis of the complex, midway between the two four-base-pair separated DNA-cleavage sites and has been observed to stabilize singe-stranded DNA breaks. Here, we use information from three crystal structures of complexes of Staphlococcus aureus DNA gyrase (one with a precursor of gepotidacin and one with the progenitor of zoliflodacin) to propose a simple single moving metal-ion-catalyzed DNA-cleavage mechanism. Our model explains why the catalytic tyrosine is in the tyrosinate (negatively charged) form for DNA cleavage. Movement of a single catalytic metal-ion (Mg2+ or Mn2+) guides water-mediated protonation and cleavage of the scissile phosphate, which is then accepted by the catalytic tyrosinate. Type IIA topoisomerases need to be able to rapidly cut the DNA when it becomes positively supercoiled (in front of replication forks and transcription bubbles) and we propose that the original purpose of the small Greek Key domain, common to all type IIA topoisomerases, was to allow access of the catalytic metal to the DNA-cleavage site. Although the proposed mechanism is consistent with published data, it is not proven and other mechanisms have been proposed. Finally, how such mechanisms can be experimentally distinguished is considered.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have