Abstract
The epidemiology of sexually transmitted infections (STIs) is inherently linked to host mating dynamics. Studies across many taxa show that adult sex ratio, a major determinant of host mating dynamics, is often skewed - sometimes strongly - toward males or females. However, few predictions exist for the effects of skewed sex ratio on STI epidemiology, and none when coupled with sex biased disease characteristics. Here we use mathematical modelling to examine how interactions between sex ratio and disease characteristics affect STI prevalence in males and females. Notably, we find that while overall disease prevalence peaks at equal sex ratios, prevalence per sex peaks at skewed sex ratios. Furthermore, disease characteristics, sex-biased or not, drive predictable differences in male and female STI prevalence as sex ratio varies, with higher transmission and lower virulence generally increasing differences between the sexes for a given sex ratio. Our work reveals new insights into how STI prevalence in males and females depends on a complex interaction between host population sex ratio and disease characteristics.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have