Abstract
PurposeThe study aims to determine an efficiency of external magnetic field on the bacteria surrounded by thousands of magnetic magnetite nanoparticles. The interstitial nanoliquid in which an artificial bacteria swims in biological cell is utilized with variable thermal conductivity. Two dimensions unsteady motion of second grade fluid are considered. The stretching wall is taken as a curved surface pattern.Design/methodology/approachThe mathematical results have been obtained by Chebyshev pseudospectral method.FindingsThe impact of the various governing parameters is described by numerical tables and diagrams. It is proven that the pure blood velocity curves are higher when compared with the magnetite/blood. It is demonstrated from clinical disease that dangerous tumors show diminished blood flow. This study concludes that the blood velocity profile increases by increasing the values of fluid parameters. This implies that the medication conveyance therapy lessens the tumor volume and helps in annihilating malignancy cells. The blood temperature distribution raises as the magnetite nanoparticles concentration increases. Consequently, the physical properties of the blood can be enhanced by immersing the magnetite nanoparticles. Further, the present outcomes cleared the thermal conductivity as, a variable function of the temperature, has an important role to enhance the heat transfer rate.Originality/valueTo the best of authors’ knowledge, this study is reported for the first time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have