Abstract
The paper discusses biases in medical imaging analysis, particularly focusing on the challenges posed by the development of machine learning algorithms and generative models. It introduces a taxonomy of bias problems and addresses them through a data infrastructure initiative: the PADME (Platform for Analytics and Distributed Machine-Learning for Enterprises), which is a part of the National Research Data Infrastructure for Personal Health Data (NFDI4Health) project. The PADME facilitates the structuring and sharing of health data while ensuring privacy and adherence to FAIR principles. The paper presents experimental results that show that generative methods can be effective in data augmentation. Complying with PADME infrastructure, this work proposes a solution framework to deal with bias in the different data stations and preserve privacy when transferring images. It highlights the importance of standardized data infrastructure in mitigating biases and promoting FAIR, reusable, and privacy-preserving research environments in healthcare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.