Abstract

A recently proposed 3rd-order thermodynamic perturbation theory (TPT) is extended to its 5th-order version and non-uniform counterpart by supplementing with density functional theory (DFT) and a number of ansatzs for a bulk 2nd-order direct correlation function (DCF). Employment of the ansatzs DCF enables the resultant non-uniform formalism devoid of any adjustable parameter and free from numerically solving an Ornstein–Zernike integral equation theory. Density profiles calculated by the present non-uniform formalism for a hard core attractive Yukawa (HCAY) fluid near a spherical geometry are favorably compared with corresponding simulation data available in literature, and are more accurate than those based on a previous 3rd + 2nd-order perturbation DFT. The non-uniform 5th-order TPT is employed to investigate adsorption of the HCAY fluid onto a colloidal particle; it is disclosed that a depletion adsorption can be induced when the coexistence bulk fluid is situated in neighborhood of a critical point or near a bulk vapor–liquid coexistence gaseous phase or liquid phase density. A physical interpretation is given for such depletion adsorption and for its connection with parameters of the potential under consideration, which is ascribed to critical density fluctuations existing within a wide region of the bulk diagram. For a large spherical external potential inducing wetting transition, it is found that only round wetting transition is found instead of 1st-order pre-wetting transition in the case of a planar wall external potential, and the wetting transition temperature increases relative to that for the planar wall external potential. The present theoretical results for wetting transitions are supported by previous investigation based on thermodynamic considerations and a phenomenological Landau mean field theory, and are also in conformity with the present qualitative physical interpretation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call