Abstract

A recently proposed non-uniform fifth-order thermodynamic perturbation theory (TPT) is employed to investigate the adsorption of a hard core attractive Yukawa (HCAY) fluid in a spherical cavity. Extensive comparison with available simulation data indicate that the non-uniform fifth-order TPT is sufficiently reliable in calculating the density profiles of the HCAY fluid in the highly confining geometry, and generally is more accurate than a previous third-order + second-order perturbation density functional theory. The non-uniform fifth-order TPT is free from numerically solving an Ornstein–Zernike integral equation, and also free of any adjustable parameter; consequently, it can be applied to both supercritical and subcritical temperature regions. The non-uniform fifth-order TPT is employed to investigate critical adsorption of the HCYA fluid in a single spherical cavity – it is disclosed that the critical fluctuations near the critical point induce depletion adsorption – quantitative theoretical calculation on relationship between the critical depletion adsorption, parameters of coexistence bulk phase and the responsible external field is in agreement with qualitative physical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call