Abstract

An absorber layer that does not fully cover the substrate is a common issue for thin-film solar cells such as perovskites. However, models that describe the impact of pinholes on solar cell performance are scarce. Here, we demonstrate that certain combinations of contact layers suppress the negative impact of pinholes better than others. The absence of the absorber at a pinhole gives way to a direct electrical contact between the two semiconducting electron and hole transport layers. The key to understand how pinholes impact the solar cell performance is the resulting nonlinear diodelike behavior of the current across the interface between these two layers (commonly referred to as a shunt current). Based on experimentally obtained data that mimic the current–voltage characteristics across these interfaces, we develop a simple model to predict pinhole-induced solar cell performance deterioration. We investigate typical contact layer combinations such as TiO2/spiro-OMeTAD, poly(3,4-ethylenedioxythiophene)-p...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call