Abstract
Two model two-dimensional singularly perturbed convection–diffusion problems are considered whose solutions may have characteristic boundary and interior layers. They are solved numerically by the streamline-diffusion finite element method using piecewise linear or bilinear elements. We investigate how accurate the computed solution is in characteristic-layer regions if anisotropic layer-adapted meshes are used. It is shown that the streamline-diffusion formulation may, in the maximum norm, imply only first-order accuracy in characteristic-layer regions. Numerical experiments are presented that support our theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.