Abstract

ABSTRACT House dust mite (HDM) is a common aeroallergen that can disrupt the airway epithelial barrier leading to dysregulated immune response, resulting in allergic lung diseases such as asthma. Cryptochrome (CRY), a circadian clock gene, plays an important role in the regulation of metabolism, and immune response. It remains unclear whether stabilizing CRY using KL001 can attenuate HDM/Th2 cytokine-induced epithelial barrier dysfunction in 16-HBE cells. We evaluate the effect of KL001 (20 µM) pre-treatment (4 hrs) in HDM/Th2 cytokine (IL-4 or IL-13)-mediated change in epithelial barrier function. HDM and Th2 cytokine-induced changes in transepithelial electrical resistance (TEER) were determined by an xCELLigence real-time cell analyzer and delocalization of adherens junction complex (AJC: E-cadherin and β-catenin) and tight junction proteins (TJP: Occludin and Zonula occludens-1) by immunostaining and confocal microscopy. Finally, quantitative real-time PCR (qRT-PCR) and Western blotting were used to measure altered gene expression and protein abundance of the epithelial barrier function and core clock genes, respectively. HDM and Th2 cytokine treatment significantly decreased TEER associated with altered gene expression and protein abundance of the selected epithelial barrier function and circadian clock genes. However, pre-treatment with KL001 attenuated HDM and Th2 cytokine-induced epithelial barrier dysfunction as early as 12–24 hrs. KL001 pre-treatment showed attenuation of HDM and Th2 cytokine-induced alteration in the localization and gene expression of AJP and TJP (Cdh1, Ocln, and Zo1) and core clock genes (Clock, Arntl/Bmal1, Cry1/2, Per1/2, Nr1d1/Rev-erbα, and Nfil3). We demonstrate, for the first time, the protective role of KL001 in HDM and Th2 cytokine-mediated epithelial barrier dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.