Abstract
ABSTRACT Dengue virus (DENV) infections are commonly reported in the tropical and subtropical regions of the world. DENV is reported to exploit various strategies to cross the blood-brain barrier. The NS1 protein of DENV plays an important role in viral neuropathogenesis, resulting in endothelial hyperpermeability and cytokine-induced vascular leak. miRNAs are short non-coding RNAs that play an important role in post-transcriptional gene regulations. However, no comprehensive information about the involvement of miRNAs in DENV-NS1-mediated neuropathogenesis has been explored to date. We observed that DENV-NS1 significantly alters the cellular miRNome of human cerebral microvascular endothelial cells in a bystander fashion. Subsequent target prediction and pathway enrichment analysis indicated that these microRNAs and their corresponding target genes are involved in pathways associated with blood-brain barrier dysfunction such as “Adherens junction” and “Tight junction”. Additionally, several miRNA-mRNA pairs were also found to be involved in cellular signaling pathways related to cytokine production, for instance, “Jak-STAT signaling pathway”, “Chemokine signaling pathway”, “IL-17 signaling pathway”, “NF-κB signaling pathway”, and “Viral protein interaction with cytokine and cytokine receptor”. The dysregulated production of inflammatory cytokines is reported to compromise BBB permeability. This study is the first report to demonstrate that DENV-NS1-mediated miRNA perturbations are crucial in compromising endothelial barrier integrity. It also offers insights into potential therapeutic targets to mitigate DENV-NS1-induced vascular permeability and inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.