Abstract
Because groundwater quality representatives for drinking usage (i.e., Schuler method, Nitrate and Groundwater Quality Index) have been abruptly changing due to extreme events induced by global climate change and over-abstracting, applying an efficient tool for their assessments is vitally important. While hotspot analysis is introduced as an efficient tool concentrating on sharp changes in groundwater quality, it has not been closely examined. Accordingly, this study is an attempt to determine the groundwater quality proxies and assess them through hotspot and accumulated hotspot analyses. To this end, a GIS-based hotspot analysis (HA) applying Getis-Ord Gi* statistics was used. The accumulated hotspot analysis was launched to identify the Groundwater Quality Index (AHA-GQI). Moreover, Schuler method (AHA-SM) was utilized to determine the maximum levels (ML) for the hottest hotspot and the lowest levels (LL) for the coldest cold-spot, and compound levels (CL). The results revealed that a significant correlation (r = 0.8) between GQI and SM was observed. However, the correlation between GQI and nitrate was not significant and the correlation between SM and nitrate was so low (r = 0.298, sig > 0.05). The results also demonstrated that using hotspot analysis on only GQI, the correlation between GQI and SM increased from 0.8 to 0.856, while using hotspot analysis on both GQI and SM increased the correlation to 0.945. Likewise, when GQI was subjected to hotspot analysis and SM underwent accumulated hotspot analysis (i.e., AHA-SM (ML)), the correlation degree increased to the highest extent (i.e., 0.958), indicating the usefulness of including the hotspot analysis and accumulated hotspot analysis in the evaluation of groundwater quality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have