Abstract

A laser-induced transient grating technique with femtosecond temporal resolution was used for the study of hot-carrier diffusion and anisotropy of an ambipolar diffusion coefficient in monocrystalline diamond. A hot-carrier transport regime observed at temperatures below 200 K and excited carrier densities lower than 1016 cm−3 persist in the sample 20–30 ps after photoexcitation. Measured drift velocity of hot carriers was approximately 4–8 times higher compared to thermalized carriers. At low sample temperatures and excited carrier densities, the ambipolar diffusion coefficient was found to be anisotropic between 〈100〉 and 〈110〉 crystallographic directions. We demonstrated experimentally that the carrier energy distribution can be controlled on a sub-picosecond timescale by an additional laser pulse with photon energy below the width of a diamond band gap absorbed by the excited carrier system. Our experimental data were reproduced well by Monte Carlo simulations that confirm the presence of a hot-carrier diffusion regime in diamond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.