Abstract

AbstractUnderstanding the enigmatic intraplate volcanism in the Tristan da Cunha region requires knowledge of the temperature of the lithosphere and asthenosphere beneath it. We measured phase‐velocity curves of Rayleigh waves using cross‐correlation of teleseismic seismograms from an array of ocean‐bottom seismometers around Tristan, constrained a region‐average, shear‐velocity structure, and inferred the temperature of the lithosphere and asthenosphere beneath the hotspot. The ocean‐bottom data set presented some challenges, which required data‐processing and measurement approaches different from those tuned for land‐based arrays of stations. Having derived a robust, phase‐velocity curve for the Tristan area, we inverted it for a shear wave velocity profile using a probabilistic (Markov chain Monte Carlo) approach. The model shows a pronounced low‐velocity anomaly from 70 to at least 120 km depth. in the low velocity zone is 4.1–4.2 km/s, not as low as reported for Hawaii (∼4.0 km/s), which probably indicates a less pronounced thermal anomaly and, possibly, less partial melting. Petrological modeling shows that the seismic and bathymetry data are consistent with a moderately hot mantle (mantle potential temperature of 1,410–1,430°C, an excess of about 50–120°C compared to the global average) and a melt fraction smaller than 1%. Both purely seismic inversions and petrological modeling indicate a lithospheric thickness of 65–70 km, consistent with recent estimates from receiver functions. The presence of warmer‐than‐average asthenosphere beneath Tristan is consistent with a hot upwelling (plume) from the deep mantle. However, the excess temperature we determine is smaller than that reported for some other major hotspots, in particular Hawaii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.