Abstract

This article describes hot Cr target magnetron sputtering enhanced by a radio-frequency inductively coupled plasma (RF-ICP) source in an Ar + N2 atmosphere. Optical emission spectroscopy revealed an opportunity to perform magnetron sputtering in an inert (Ar) atmosphere, while the CrNx coating can be deposited on a substrate in a chemically reactive atmosphere formed by the RF-ICP source. High stability and repeatability of deposition process were observed, and the deposition rate of the CrNx coatings increased from 106 to 127 nm/min as N2 flow rate rose. The power of the RF-ICP source and the N2 flow rate can be used to tailor and control deposition conditions. The XRD and WDS measurements showed the effect of deposition conditions on the crystal structure and elemental composition of CrNx coatings. It was found that the change of substrate bias, RF-ICP source power and N2 flow rate result in variation of coating stoichiometry from pure Cr to CrN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.