Abstract
Abstract The effect of hot isostatic pressing (HIPing) on as-sintered α-Al2O3 ceramics for total hip arthroplasty (THA) was investigated. The sinterability of these powders and the minimum temperature required to obtain closed porosity have been determined by pressureless sintering in air at temperatures between 1280 and 1460 °C for 2 h. Temperatures of 1300 and 1325 °C and applied pressures of 150 MPa for 30 min were utilised in the HIP cycles. Densities >98% of the theoretical density (TD) have been obtained after HIPing, and the grain sizes previously obtained during pressureless sintering increased slightly during the HIP treatment. The microstructures before and after HIP treatments were observed by means of scanning electron microscopy (SEM). The fracture toughness was obtained by the indentation fracture technique using a Vickers hardness tester at a load of 10 N with a dwell time of 15 s for all cases. The ceramics obtained at the lowest HIP temperature (1300 °C) presented a grain size of 0.62 ± 0.04 μm, hardness of 20.5 ± 0.6 GPa, and fracture toughness of 4.8 ± 0.3 MPa m1/2. The reported values were higher than those obtained by other authors and were in concordance with international standards that could make these ceramics available as a replacement for metal-on-polyethylene in orthopaedic surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Refractory Metals and Hard Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.