Abstract

The energy relaxation associated with acoustic phonons has been investigated in a series of modulation doped GaAs/AlGaAs single and multiple quantum wells grown by molecular beam epitaxy, using the hot electron Shubnikov — de Haas effect. The power loss is shown to be proportional to (T e 2 − T L 2) for electron temperatures 2.2K < T e < 8K and proportional to (T e 3 − T L 3) for 8K < T e < 20K. The energy loss rates due to acoustic phonon scattering via both deformation potential coupling and piezoelectric coupling have been calculated. The total energy loss rate as a function of electron temperature is compared with the experimental results. Good agreement is obtained for 2.2K < T e < 8K. Above 8K the energy loss rate is seen to rise above the predicted values, indicating the onset of an extra energy relaxation mechanism. The application of a high electric field (E = 3kV/cm) at low lattice temperatures is shown to induce persistent parallel conduction and a subsequent reduction of the low field well mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.