Abstract
Disorder-assisted electron-phonon scattering processes (supercollision processes) have been reported to dominate the cooling of hot carriers in graphene. Here, we determine to what extent this type of relaxation mechanism governs the hot carrier dynamics in the parent compound graphite. Electron temperature transients derived from time- and angle-resolved extreme ultraviolet photoemission spectra are analyzed based on a three-temperature model which considers electron gas, optical phonons, and acoustic phonons as coupled subsystems. In the probed fluence regime of $0.035--1.4\phantom{\rule{0.16em}{0ex}}\mathrm{mJ}/{\mathrm{cm}}^{2}$, we find no indications for supercollision processes being involved in the cooling of the hot carriers. The data are, by contrast, compatible with a hot phonon assisted mechanism involving anharmonic coupling between optical phonons and acoustic phonons, a process which has previously been suggested for graphite. We attribute the striking difference to the reported findings for (substrate-supported) graphene to the low defect density of highly ordered pyrolitic graphite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.