Abstract

The hot deformation behaviors of GCr15 bearing steel were investigated by isothermal compression tests, performed on a Gleeble-3800 thermal-mechanical simulator at temperatures between 950 °C and 1 150 °C and strain rates between 0.1 and 10 s−1. The peak stress and peak strain as functions of processing parameters were obtained. The dependence of peak stress on strain rate and temperature obeys a hyperbolic sine equation with a Zener-Hollomon parameter. By regression analysis, in the temperature range of 950−1 150 °C and strain rate range of 0.1−10 s−1, the mean activation energy and the stress exponent were determined to be 351 kJ/mol and 4.728, respectively. Meanwhile, models of flow stress and dynamic recrystallization (DRX) grain size were also established. The model predictions show good agreement with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call