Abstract

Hot carrier effect (HCE) is studied on annular NMOS and two-edged NMOS such as H-shape gate NMOS, T-shape gate NMOS and common two-edged NMOS. Based on the chemical reaction equation of HCE degradation and a geometry dependent reaction diffusion equation, a HCE degradation model for annular NMOS and two-edged NMOS is proposed. According to this model, we conclude that the time exponent of the threshold voltage degradation depends on the configuration of the gate, and annular NMOS has more serious HCE degradation than two-edged NMOS. The design, fabrication and HCE experiments of these NMOS in a 0.5-μm PD SOI process verify the correctness of the conclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.