Abstract

In this paper, we present an analysis of the degradation induced by hot-carrier stress in new generation power lateral double-diffused MOS (LDMOS) transistors. Two architectures with the same nominal voltage and comparable performance featuring a selective LOCOS and a shallow-trench isolation are investigated by means of constant voltage stress measurements and TCAD simulations. In particular, the on-resistance degradation in linear regime is experimentally extracted and numerically reproduced under different stress conditions. A similar amount of degradation has been reached by the two architectures, although different physical mechanisms contribute to the creation of the interface states. By using a recently developed physics-based degradation model, it has been possible to distinguish the damage due to collisions of single high-energetic electrons (single-particle events) and the contribution of colder electrons impinging on the silicon/oxide interface (multiple-particle events). A clear dominance of the single-electron collisions has been found in the case of LOCOS structure, whereas the multiple-particle effect plays a clear role in STI-based device at larger gate-voltage stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.