Abstract
Hostile attribution bias refers to the tendency to interpret social situations as intentionally hostile. While previous research has focused on its developmental origins and behavioral consequences, the underlying neural mechanisms remain underexplored. Here, we employed functional near-infrared spectroscopy (fNIRS) to investigate the neural correlates of hostile attribution bias. While undergoing fNIRS, male and female participants listened to and provided attribution ratings for 21 hypothetical scenarios where a character's actions resulted in a negative outcome for the listener. Ratings of hostile intentions were averaged to measure hostile attribution bias. Using intersubject representational similarity analysis, we found that participants with similar levels of hostile attribution bias exhibited higher levels of neural synchrony during narrative listening, suggesting shared interpretations of the scenarios. This effect was localized to the left ventromedial prefrontal cortex (VMPFC) and was particularly prominent in scenarios where the character's intentions were highly ambiguous. We then grouped participants into high and low bias groups based on a median split of their hostile attribution bias scores. A similarity-based classifier trained on the neural data classified participants as having high or low bias with 75% accuracy, indicating that the neural time courses during narrative listening was systematically different between the two groups. Furthermore, hostile attribution bias correlated negatively with attributional complexity, a measure of one's tendency to consider multifaceted causes when explaining behavior. Our study sheds light on the neural mechanisms underlying hostile attribution bias and highlights the potential of using fNIRS to develop nonintrusive and cost-effective neural markers of this sociocognitive bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of neuroscience : the official journal of the Society for Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.