Abstract

Plant defenses allow plants to deter or kill their insect herbivores and are considered to be a major driver of host use for herbivorous insects in both ecological and evolutionary time. Many closely related species of insect herbivores differ in their ability to respond to plant defenses and in some cases are specialized to specific plant species. Here we tested whether both mechanical and chemical plant defenses are a major factor in determining the host range of 2 sibling species of Prodoxid bogus yucca moths, Prodoxus decipiens (Riley) and Prodoxus quinquepunctellus (Chambers) that feed within the inflorescence stalk of Yucca species. These 2 moth species have separate suites of host plant species, yet narrowly overlap geographically and share 1 Yucca species, Y. glauca. We surveyed the lignin and cellulose content, the force required to the puncture the stalk tissue, and saponin concentration across 5 Yucca species used as hosts. Lignin, cellulose concentrations, and stalk hardness differed among Yucca species but did not correlate with host use patterns by the moths. Saponin concentrations in the stalk tissue were relatively low for yuccas (<1%) and did not differ among species. The results suggest that these moth species should be able to use each other's hosts for egg deposition. Additional factors such as larval development or competition among larvae for feeding space may serve to keep moth species from expanding onto plants used by its sibling species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.