Abstract
Lipids and lipid metabolism play an important role in RNA virus replication, which typically occurs on host cell endomembrane structures in the cytoplasm through mechanisms that are not yet fully identified. We conducted genome-scale CRISPR screening and identified sphingomyelin synthase 1 (SMS1; encoded by SGMS1) as a critical host factor for infection by severe fever with thrombocytopenia syndrome virus (SFTSV). SGMS1 knockout reduced sphingomyelin (SM) (d18:1/16:1) levels, inhibiting SFTSV replication. A helix-turn-helix motif in SFTSV RNA-dependent RNA polymerase (RdRp) directly binds to SM(d18:1/16:1) in Golgi apparatus, which was also observed in SARS-CoV-2 and lymphocytic choriomeningitis virus (LCMV), both showing inhibited replication in SGMS1-KO cells. SM metabolic disturbance is associated with disease severity of viral infections. We designed a novel SMS1 inhibitor that protects mice against lethal SFTSV infection and reduce SARS-CoV-2 replication and pathogenesis. These findings highlight the critical role of SMS1 and SM(d18:1/16:1) in RNA virus replication, suggesting a broad-spectrum antiviral strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.