Abstract

Historically, efforts to assess 'zoonotic risk' have focused mainly on quantifying the potential for cross-species emergence of viruses from animal hosts. However, viruses clearly differ in relative burden, both in terms of morbidity and mortality (virulence) incurred and the capacity for sustained human-to-human transmission. Extending previously published databases, we delineated host and viral traits predictive of human mortality associated with viral spillover, viral capacity to transmit between humans following spillover and the probability of a given virus being zoonotic. We demonstrate that increasing host phylogenetic distance from humans positively correlates with human mortality but negatively correlates with human transmissibility, suggesting that the virulence induced by viruses emerging from hosts at high phylogenetic distance may limit capacity for human transmission. Our key result is that hosts most closely related to humans harbour zoonoses of lower impact in terms of morbidity and mortality, while the most distantly related hosts-in particular, order Chiroptera (bats)-harbour highly virulent zoonoses with a lower capacity for endemic establishment in human hosts. As a whole, our results emphasize the importance of understanding how zoonoses manifest in the human population and also highlight potential risks associated with multi-host transmission chains in spillover. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call