Abstract
Human learning essentially involves embodied interactions with the material world. But our worlds now include increasing numbers of powerful and (apparently) disembodied generative artificial intelligence (AI). In what follows we ask how best to understand these new (somewhat 'alien', because of their disembodied nature) resources and how to incorporate them in our educational practices. We focus on methodologies that encourage exploration and embodied interactions with 'prepared' material environments, such as the carefully organized settings of Montessori education. Using the active inference framework, we approach our questions by thinking about human learning as epistemic foraging and prediction error minimization. We end by arguing that generative AI should figure naturally as new elements in prepared learning environments by facilitating sequences of precise prediction error enabling trajectories of self-correction. In these ways, we anticipate new synergies between (apparently) disembodied and (essentially) embodied forms of intelligence. This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions of the Royal Society of London. Series B, Biological sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.