Abstract

Wolbachia are the most abundant maternally inherited endosymbionts of insects and cause various reproductive alterations in their hosts. One such manipulation is cytoplasmic incompatibility (CI), which is a sperm-egg incompatibility typically resulting in zygotic death. Nasonia longicornis (Hymenoptera: Pteromalidae) has an A supergroup and two closely related B supergroup Wolbachia infections. The B supergroup bacteria co-diverged in this host genus. Both triple (wNlonAwNlonB1wNlonB2) and double infections (wNlonAwNlonB1, wNlonAwNlonB2) have been obtained from the field. In the present study, CI was determined among the three Wolbachia types in different host genetic backgrounds. Results show that host genetic background determines whether bidirectional CI or unidirectional CI occurs between the two closely related B group Wolbachia. Results show that the wNlonB1-infected males are bidirectionally incompatible with wNlonB2 in their 'native' nuclear genetic background, whereas wNlonB1 males are compatible with wNlonB2 in two other N. longicornis genetic backgrounds, resulting in unidirectional CI. In contrast, wNlonB2-infected males are incompatible with wNlonB1 females in all three host genetic backgrounds. These changes in incompatibility are not due to the loss of the bacteria. We hypothesize that a repressor gene for sperm modification by wNlonB1 is segregating in N. longicornis populations. The relevance of these findings to the potential role of Wolbachia in host-reproductive divergence and speciation is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call