Abstract
Cyclotides are plant mini-proteins whose natural function is thought to be to protect plants from pest or pathogens, particularly insect pests. They are approximately 30 amino acids in size and are characterized by a cyclic peptide backbone and a cystine knot arrangement of three conserved disulfide bonds. This article provides an overview of the reported pesticidal or toxic activities of cyclotides, discusses a possible common mechanism of action involving disruption of biological membranes in pest species, and describes methods that can be used to produce cyclotides for potential applications as novel pesticidal agents.
Highlights
Cyclotides [1] are a plant-derived family of small proteins characterized by their head-to-tail cyclic backbone and a cystine knot arrangement of three conserved disulfide bonds
The results demonstrate that the cyclotides show potential for use in the control of nematode parasites of both agricultural and medical importance
Cyclotides were discovered only 15 years ago, they have developed into an exciting field of research and display a wide range of biological activities
Summary
Cyclotides [1] are a plant-derived family of small proteins characterized by their head-to-tail cyclic backbone and a cystine knot arrangement of three conserved disulfide bonds. They were first discovered in plants from the Rubiaceae (coffee) and Violaceae (violet) families but have since been reported in a range of other plants from the Cucurbitaceae (cucurbit) and Fabaceae (legume) families and it has been predicted that they are widely distributed within the plant kingdom [2]. Enzyme activity plays an important role [50,51] This hypothesis is consistent with the presence of an absolutely conserved Asn (or Asp) residue that at the C-terminus of the cyclotide domain within the precursor proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.