Abstract

Denmark is a country with high prevalence of livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC) 398 in pigs. Even though pig farming is regarded as the main source of human infection or colonization with MRSA CC398, 10–15% of the human cases appear not to be linked to pigs. Following the recent reports of MRSA CC398 in horses in other European countries and the lack of knowledge on S. aureus carriage in this animal species, we carried out a study to investigate whether horses constitute a reservoir of MRSA CC398 in Denmark, and to gain knowledge on the frequency and genetic diversity of S. aureus in horses, including both methicillin-resistant and -susceptible S. aureus (MSSA). Nasal swabs were collected from 401 horses originating from 74 farms, either at their farms or prior to admission to veterinary clinics. Following culture on selective media, species identification by MALDI-TOF MS and MRSA confirmation by standard PCR-based methods, S. aureus and MRSA were detected in 54 (13%) and 17 (4%) horses originating from 30 (40%) and 7 (9%) farms, respectively. Based on spa typing, MSSA differed genetically from MRSA isolates. The spa type prevalent among MSSA isolates was t127 (CC1), which was detected in 12 horses from 11 farms and represents the most common S. aureus clone isolated from human bacteremia cases in Denmark. Among the 17 MRSA carriers, 10 horses from three farms carried CC398 t011 harboring the immune evasion cluster (IEC), four horses from two farms carried IEC-negative CC398 t034, and three horses from two farms carried a mecC-positive MRSA lineage previously associated with wildlife and domestic ruminants (CC130 t528). Based on whole-genome phylogenetic analysis of the 14 MRSA CC398, t011 isolates belonged to the recently identified horse-adapted clone in Europe and were closely related to human t011 isolates from three Danish equine veterinarians, whereas t034 isolates belonged to pig-adapted clones. Our study confirms that horses carry an equine-specific clone of MRSA CC398 that can be transmitted to veterinary personnel, and reveals that these animals are exposed to MRSA and MSSA clones that are likely to originate from livestock and humans, respectively.

Highlights

  • Over the last decade, livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) belonging to clonal complex (CC) 398 has emerged worldwide in various animal species, especially in pigs as well as in people in contact with MRSApositive animals (Petinaki and Spiliopoulou, 2012)

  • The objectives of this study were (i) to investigate whether horses constitute a reservoir of MRSA CC398 in Denmark and (ii) to gain information on the frequency and genetic diversity of S. aureus in this animal species, including both MRSA and methicillin-resistant and -susceptible S. aureus (MSSA)

  • We found single-nucleotide polymorphisms (SNPs) 309-2 in three immune evasion cluster (IEC)-negative MRSA CC398 isolates from the worldwide collection, including two porcine spa type t011 isolates from Hungary and Italy and one equine spa type t1451 isolate from Belgium

Read more

Summary

Introduction

Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) belonging to clonal complex (CC) 398 has emerged worldwide in various animal species, especially in pigs as well as in people in contact with MRSApositive animals (Petinaki and Spiliopoulou, 2012). In addition to the noticeable spread of MRSA CC398 in horses, recent studies suggest that zoonotic transmission between horses and humans may be enhanced by the presence of the phage Sa3 in horse isolates (Cuny et al, 2015; Jung et al, 2017). This phage carries the human immune evasion gene cluster (IEC) that provides S. aureus protection from the immune system of humans and horses (Jung et al, 2017). Data on S. aureus carriage and infection in horses are largely biased in favor of MRSA and very little is not about the prevalence and genetic diversity of methicillinsusceptible (MSSA) strains

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call