Abstract

For various organizational reasons, large investors typically split their portfolio decision into two stages - asset allocation and stock selection. We hypothesise that mean-variance models are superior to equal weighting for asset allocation, while the reverse applies for stock selection, as estimation errors are less of a problem for mean-variance models when used for asset allocation than for stock selection. We confirm this hypothesis for US data using Bayes-Stein with no short sales and variance based constraints. Robustness checks with four other types of mean-variance model (Black-Litterman with three different reference portfolios, minimum variance, Bayes diffuse prior and Markowitz), and a wide range of parameter settings support our conclusions. We also replicate our core results using Japanese data, with additional replications using the Fama-French 5, 10, 12 and 17 industry portfolios and equities from seven countries. In contrast to previous results, but consistent with our empirical results, we show analytically that the superiority of mean-variance over 1/N is increased when the assets have a lower cross-sectional idiosyncratic volatility, which we also confirm in a simulation analysis calibrated to US data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.