Abstract

Breast cancer (BC) is a major health problem for women around the world. Although advances in the field of molecular therapy have been achieved, the successful therapeutic management of BC, particularly metastatic disease, remains a challenge for patients and clinicians. One of the areas of current investigation is the circulating tumor cells (CTCs), which have a determinant role in the development of distant metastasis. At the present, many of the available treatment strategies for metastatic disease are of limited benefit. However, the elucidation of the mechanisms of tumor progression and metastasis may help to identify key molecules/components that may function as therapeutic targets in the future. In the present study, the functional analysis of CTCs revealed their ability to grow and proliferate to form colonies. Immunofluorescence staining of the CTCs' colonies exhibits elevated expression of cell growth and survival associated proteins such as, survivin, ERK and Akt1. More importantly, the functional screening of the chemokine profile in BC patients' sera revealed an HR-independent elevation of the chemokine CXCL10 when compared to healthy controls. The analysis of chemokines CXCL9 and CXCL11 demonstrated an HR-dependent production pattern. The levels of both CXCL9 and CXCL11 were markedly high in HR+ patients' sera when compared to HR− patients and healthy controls. The functional analysis of HR+ and HR− BC derived cell lines when cultivated in media supplemented with patients' sera demonstrated the alteration of tumor progression and metastasis related proteins. We noted the induction of survivin, β-catenin, MKP-1, pERK, CXCR4 and MMP-1 both at the protein and mRNA levels. The induction of those proteins was in keeping with patients' sera induced cell proliferation as measured by the MTT assay. In conclusion, our data emphasizes the role of chemokines, especially CXCL10, in BC progression and metastasis via the induction of signaling pathways, which mainly involve survivin, β-catenin, MKP-1 and MMP-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call