Abstract
High-grade serous ovarian cancer (HGSOC) is the most prevalent subtype of ovarian cancer and demonstrates 5-year survival of just 40%. One of the major causes of mortality is the development of tumour resistance to platinum-based chemotherapy, which can be modulated by dysregulation of DNA damage repair pathways. We therefore investigated the contribution of the DNA interstrand crosslink repair protein FANCD2 to chemosensitivity in HGSOC. Increased FANCD2 protein expression was observed in some cell line models of platinum resistant HGSOC compared with paired platinum sensitive models. Knockdown of FANCD2 in some cell lines, including the platinum resistant PEO4, led to increased carboplatin sensitivity. Investigation into mechanisms of FANCD2 regulation showed that increased FANCD2 expression in platinum resistant cells coincides with increased expression of mTOR. Treatment with mTOR inhibitors resulted in FANCD2 depletion, suggesting that mTOR can mediate platinum sensitivity via regulation of FANCD2. Tumours from a cohort of HGSOC patients showed varied nuclear and cytoplasmic FANCD2 expression, however this was not significantly associated with clinical characteristics. Knockout of FANCD2 was associated with increased cell migration, which may represent a non-canonical function of cytoplasmic FANCD2. We conclude that upregulation of FANCD2, possibly mediated by mTOR, is a potential mechanism of chemoresistance in HGSOC and modulation of FANCD2 expression can influence platinum sensitivity and other tumour cell characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.