Abstract
Growth hormone secretion by the somatotroph cells depends upon the interaction between hypothalamic regulatory peptides, target gland hormones and a variety of growth factors acting in a paracrine or autocrine fashion. This review will be focused on recent data regarding the mechanism by which growth hormone-releasing hormone (GHRH) influences somatotroph cell function and the physiological role played by Ghrelin and leptin in the regulation of growth hormone (GH) secretion. It is well established that binding of GHRH to its receptor leads to activation of protein kinase A (PKA). More recently, it was found that GHRH can also activate mitogen-activated protein (MAP) kinase both in pituitary cells and in a cell line overexpressing the GHRH receptor. Whether somatotroph adenomas, either with or without a GS-alpha mutation, have alterations in some of the components of the activation of the MAP kinase pathway remains to be known. The recent isolation of Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor, can be considered a landmark in the GH field, which opens up the possibility of gaining greater insight into our understanding of the mechanisms involved in the regulation of GH secretion and somatic growth. Indeed, preliminary evidences indicate that this peptide exerts a marked stimulatory effect on plasma GH levels in both rats and humans. Finally, it is well known that GH secretion is markedly influenced by nutritional status. Leptin has emerged as an important adipose tissue-generated signal that is involved in the regulation of GH secretion, thus providing an integrated regulatory system of growth and metabolism. Although the effects of leptin on GH secretion in humans remain to be clarified, indirect evidences indicate that it may play an inhibitory role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.