Abstract

Introduction: Carbapenemase production is an important mechanism of carbapenem resistance in Acinetobacter species. This study investigated the presence of the carbapenem-hydrolysing class D β–lactamase- encoding genes, blaOXA-23 and blaOXA-58, and their association with the spread of multidrug-resistant (MDR) Acinetobacter species in intensive care units at an academic hospital. Method: Forty-four MDR Acinetobacter species were confirmed using VITEK®2 and Epsilometer tests. The blaOXA-23 and blaOXA-58 genes were detected by polymerase chain reaction (PCR) in twenty-four selected isolates. The blaOXA-23 amplicons were sequenced and compared to the GenBank database. Genotypic relatedness of isolates was determined by pulsed field gel electrophoresis (PFGE). Clinical and laboratory data were analysed. Results: Among the twenty-four isolates, eighteen were carbapenem resistant and six were sensitive. The blaOXA-23 gene, but not blaOXA-58, was detected in the eighteen resistant strains. The blaOXA-23 amplicons showed 100% identity with the GenBank database of blaOXA-23. The MICs of carbapenems against Acinetobacter species carrying the blaOXA-23 gene were 8 to 16 μg/ml. Genetic relatedness was evident among isolates of seven pairs from fourteen patients. Of these patients, twelve were in the same ICUs and two were adjacent to another ICU during the same hospitalisation period. Conclusion: The selected MDR Acinetobacter species carried the blaOXA-23 gene responsible for resistance to carbapenems, while molecular and clinical data analysis suggested horizontal transmission in ICUs. In addition, the PFGE typing of a diverse collection of MDR Acinetobacter species clones showed that isolates were related to no more than two patients, suggesting that no outbreak had occurred.

Highlights

  • Carbapenemase production is an important mechanism of carbapenem resistance in Acinetobacter species

  • This study investigated the presence of the carbapenem-hydrolysing class D β–lactamase- encoding genes, blaOXA-23 and blaOXA-58, and their association with the spread of multidrug-resistant (MDR) Acinetobacter species in intensive care units at an academic hospital

  • There has been an increase of Acinetobacter spp. resistance to cephalosporins and carbapenems over the years,[12,13,14] leaving clinicians with limited therapeutic options.[12,13,14]

Read more

Summary

Introduction

Carbapenemase production is an important mechanism of carbapenem resistance in Acinetobacter species. This study investigated the presence of the carbapenem-hydrolysing class D β–lactamase- encoding genes, blaOXA-23 and blaOXA-58, and their association with the spread of multidrug-resistant (MDR) Acinetobacter species in intensive care units at an academic hospital. Conclusion: The selected MDR Acinetobacter species carried the blaOXA-23 gene responsible for resistance to carbapenems, while molecular and clinical data analysis suggested horizontal transmission in ICUs. In addition, the PFGE typing of a diverse collection of MDR Acinetobacter species clones showed that isolates were related to no more than two patients, suggesting that no outbreak had occurred. There has been an increase of Acinetobacter spp. resistance to cephalosporins and carbapenems over the years,[12,13,14] leaving clinicians with limited therapeutic options.[12,13,14] Resistance to carbapenems, which display high efficacy and low toxicity, is of global concern.[12,13,14] Surveillance reports from China determined that carbapenem resistance in Acinetobacter spp. doubled from 30% in 2006 to 63% in 2013.12–14 South African studies revealed Acinetobacter spp. resistance towards carbapenems and cephalosporins,[15,16] imipenem (86%), meropenem (86%) cefepime (90%) and ceftazidime (89%).[16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call