Abstract

The performance of active sonar detection systems is seriously affected by the reverberation at the bottom of the waveguide in shallow water. In order to improve the performance of active sonar detection, it is necessary to understand the horizontal correlation of shallow-water bottom reverberation in active towed-array processing technology. However, the current research on the spatial correlation of reverberation is mainly based on vertical correlation, little work has been done on the horizontal correlation characteristics of long-distance seabed reverberation, and there is no support from sea test data. In this paper, the coupled mode reverberation model is applied to the horizontal correlation, and is studied according to the receiving position, time, and frequency. The simulation results show that, for the long-range bottom reverberation, the lateral correlation is greater than the longitudinal correlation in the horizontal space. By introducing the adiabatic mode solution, the mathematical model of horizontal correlation in the range-dependent waveguide with depth is derived. The numerical results show that the influence of the seabed dip angle on the horizontal correlation should be considered and that the horizontal correlation is affected obviously by the propagation effects of the sloped sea floor. Finally, the experimental data processing and analysis are given and verify the correctness of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.