Abstract

This paper performs an in-depth qualitative analysis of the dynamic behavior of a diffusive SIS epidemic system with delay in heterogeneous environment subject to homogeneous Neumann boundary condition. Firstly, we explore the principal eigenvalue to obtain the stability of the disease-free equilibrium (DFE) and the effect of the nonhomogeneous coefficients on the stable region of the DFE. Secondly, we obtain the existence, multiplicity and explicit structure of the endemic equilibrium (EE), i.e., spatially nonhomogeneous steady-state solutions, by using the implicit function theorem and Lyapunov-Schmidt reduction method. Furthermore, by analyzing the distribution of eigenvalues of infinitesimal generators, the stability of EE and the existence of Hopf bifurcations at EE are given. Finally, the direction of Hopf bifurcation and stability of the bifurcating periodic solution are obtained by virtue of normal form theory and center manifold reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.