Abstract
A diffusive logistic equation with mixed delayed and instantaneous density dependence and Dirichlet boundary condition is considered. The stability of the unique positive steady state solution and the occurrence of Hopf bifurcation from this positive steady state solution are obtained by a detailed analysis of the characteristic equation. The direction of the Hopf bifurcation and the stability of the bifurcating periodic orbits are derived by the center manifold theory and normal form method. In particular, the global continuation of the Hopf bifurcation branches are investigated with a careful estimate of the bounds and periods of the periodic orbits, and the existence of multiple periodic orbits are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.