Abstract

The present paper is concerned with a diffusive population model of Logistic type with an instantaneous density-dependent term and two delayed density-dependent terms and subject to the zero-Dirichlet boundary condition. By regarding the delay as the bifurcation parameter and analyzing in detail the associated eigenvalue problem, the local asymptotic stability and the existence of Hopf bifurcation for the sufficiently small positive steady state solution are shown. It is found that under the suitable condition, the positive steady state solution of the model will become ultimately unstable after a single stability switch (or change) at a certain critical value of delay through a Hopf bifurcation. However, under the other condition, the positive steady state solution of the model will become ultimately unstable after multiple stability switches at some certain critical values of delay through Hopf bifurcations. In addition, the direction of the above Hopf bifurcations and the stability of the bifurcating periodic solutions are analyzed by means of the center manifold theory and normal form method for partial functional differential equations. Finally, in order to illustrate the correction of the obtained theoretical results, some numerical simulations are also carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call